If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5m^2-12m+4=0
a = 5; b = -12; c = +4;
Δ = b2-4ac
Δ = -122-4·5·4
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8}{2*5}=\frac{4}{10} =2/5 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8}{2*5}=\frac{20}{10} =2 $
| 6-4d+10=-8+4d | | -2(x-1)+4x=10 | | 2x+100+2x+80=180 | | x-6+4=-8 | | 1/3x+2=-5 | | 2(14+9x+x^2)=0 | | 12t^2-48t-48=0 | | -18x-20=-14x-+120 | | 2^(3y)=9 | | 9x^2+50=219 | | 15x+7=23 | | 0.2n+5.3=4.7 | | 3x^2-54x+819=0 | | 2(x–7)=10x+18 | | a−1.7=8.42−a | | |4x-3|=6 | | 1.5n=1.25n+8 | | 3n^2+7.85=90 | | 30x+14-6x=8x | | -4x+(x+3)=16 | | 81+53+6+4x=180 | | 4(b-2)=(2-b) | | 0.5+x=0.19 | | 6×y-25=125 | | 45+77+7x-5=180 | | 9=-w+6 | | 3n^2-0.75+8.6+n=90 | | 21x+14-6x=8x-126 | | 7x-1=2(4x-3) | | 5(x-9)=2x+2x | | 7x+55=180 | | 8+4x=24-12 |